Progress in TC forecast at ECWMF

2021 TC forecast performance

Fernando Prates, Linus Magnusson and Andy Brown

Evaluation Section, Forecast Department

fernando.prates@ecmwf.int

Outline

- TC forecast performance 2021
- •IFS model cycle 47r3
 - Key features
 - Meteorological impact (TCs, steer winds,...)
- •IFS model cycle 48r1
 - Configuration

Recent model upgrades

Tropical cyclone verification: HRES, ENS, ERA5

Model cycles 47r1 & 47r2 (HRES & ENS); 41r2 (ERA5)

TC position errors – All Basins VT: 20201201 to 20211130

homogeneous samples (47r1 & 47r2) **HRES ENS Mean Error & Spread** ENS mean position fcst error Ctrl <> blue ; Expv <> red; 95% CI HRES mean position fcst error Ctrl <> blue ; Expv <> red; 95% Cl **GEFS GFS** 600 500 **ENS HRES** 400 500 400 ECMWF vs NCEP (\$\frac{\overline{\ove 300 음 200 200 200 200 100 100 100 100 120 144 time step (hours) time step (hours) HRES mean position fcst error Ctrl <> blue ; Expv <> red; 95% Cl ENS mean position fcst error Ctrl <> blue ; Expv <> red; 95% CI 600 **MOGREPS** 600 **ENS** 600 **HRES** 400 500 400 N ECMWF vs UKMO 400 .5 300 5 2 300 300 8 200 200 200 200 100 100 100 time step (hours)

time step (hours)

Ensemble mean error distribution day 5 (EC vs NCEP)

Ensemble - Longitude for Elsa passing 25N

TC Elsa 1 July 00UTC

0001 05L 20210701 00

920 950 905 975 990 1005

ECWMF

EC forecast runs tend to show a positive cross-track errrors for Elsa

Assimilation of all-sky AMSU-A in IFS cycle 47r3

Satellite	Launch	EOL	Broken Channels
NOAA-15	1998	-	6, 11, 14
NOAA-16	2000	2014	8, 9
NOAA-17	2002	2003	N/A
Aqua	2002	-	1, 2, 5, 6, 7, 14
NOAA-18	2005	-	8, 9
Metop-A	2006	2021	7, 8
NOAA-19	2009	-	7, 8
Metop-B	2012	-	15
Metop-C	2018	-	7/2

AMSU-A channels 5 to 14 are actively assimilated. These are channels with primary sensitivity to temperature from the mid-troposphere through upper stratosphere

In 47r3, "clear-sky" assimilation is replaced by "all-sky", treating satellite radiances in all atmospheric conditions

- → Assimilation of all-sky AMSU-A: Increases use of microwave sounder data in areas of cloud and precipitation (+12% global increase for Channel 5)
- → Provide critical observations near Tropical Cyclones (example: Hurricane Humberto)

Moist physics upgrade in IFS Cycle 47r3

- Major development to moist physics parametrizations (cloud, convection, turbulent mixing, microphysics)
- •Simpler interactions, more consistency, improved physical processes, better numerics

- the over activity of convective cells in ITCZ is reduced
- ... https://www.ecmwf.int/en/newsletter/164/meteorology/major-moist-physics_upgrade.ifs

Model Climate Tropical Cyclone Frequency

M-Climate TS or HR (>34kts) BT: 2021082600 +96h-240h

Meteorological Impact IFS cycle 47r3 – Scorecard

HRES ENS
AnomCorr /RMSE CRPS

(2) Improved upper air - WIND

RMSE extratropics 1-2%, tropics 1-7% improvement

red = 47r3 is worse than 47r2.

blue = 47r3 is better than 47r2.

purple = 47r3is more active than 47r2

TC forecast performance comparison 47r3 & 47r2

All Basins & homogeneous samples

VT: 20201201-20211012 **All Basins**

pos fcst errors

MSLP fcst errors (bias)

MSLP fcst errors (MAE)

ENS

.error

spread

Error-spread

TC position errors – North Atlantic 2021 Season 47r3 only!

All Basins & homogeneous samples

ENS Mean Error & spread

72

time step (hours)

120

144

168

Next model cycles

 Migration of IFS cycle 47r3 from Cray to Atos HPC (early summer 2022, from Reading, UK, to Bologna, Italy)

•IFS cycle 48r1 (Q1 2023)

- ENS horizontal resolution increase (from 18 to 9 km) twice a day up 15 days
- ENS Extended-range (46 days) to run daily (currently twice a week) with 100 ensemble members (lower resolution, 36 km) – becoming a separate system
- Re-forecast configuration is unchanged (Mon & Thu 11-members, 20 years)

Summary

- Two major model cycles upgrades in 2021
- •2021 Atlantic basin: larger TC position forecast errors compared with other Centres
- Globally: no degradation of HRES TC tracks against ERA5
- Cycle 47r3 impact on TC forecast: better TC tracks and weaker storms.
- •Migration of the operational suite (47r3) to Atos HPC this summer
- Cycle 48r1 implementation in Q1 2023
 - ENS horiz. resolution increase (9 km)
 - Daily runs of the Extended Range (46 days) with 100 members at a lower resolution.

